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We present a theoretical model for the experimentally found but counterintuitive exceptionally long

lifetime of surface nanobubbles. We can explain why, under normal experimental conditions, surface

nanobubbles are stable for many hours or even up to days rather than the expected microseconds. The

limited gas diffusion through the water in the far field, the cooperative effect of nanobubble clusters, and

the pinned contact line of the nanobubbles lead to the slow dissolution rate.
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Introduction.—Since their first prediction and discovery
almost 20 years ago [1], intense research on surface nano-
bubbles has raised many questions about this intriguing
and important phenomenon, which has great potential for
various applications [2–5]. Surface nanobubbles have now
been widely reported on various surfaces in contact with
water employing various detection mechanisms like
atomic force microscopy (AFM) and most recently also
through direct optical visualization [6,7]. With all these
different methods they are found to behave differently than
regular macroscopic bubbles. Surface nanobubbles behave
peculiarly in several ways: their contact angle is always
much lower than expected from Young’s law [8,9]; they are
stable against violent decompression [10]; and in particular
they are stable for much longer than expected: For such
small bubbles one would expect a lifetime of order�s, due
to the high Laplace pressure inside the bubbles that drives
the gas into the liquid. On this last question many explan-
ations were proposed, ranging from contamination that
shields or limits the diffusive outflux of gas [11] to a
dynamic equilibrium situation where lost gas is replen-
ished [12,13]. However, both theories are refuted by ex-
perimental evidence: the addition of surfactants does not
influence the behavior of nanobubbles [14], and the circu-
latory gas flow required for the dynamic equilibrium theory
is not measured in all experiments so it cannot be the
stabilization mechanism [7,13]. In addition, a large prob-
lem with the dynamic equilibrium theory is that it requires
some form of driving to satisfy the second law of thermo-
dynamics, and its origin is unclear. In molecular dynamics,
some local inflow near the contact line was indeed
observed, but its strength was too weak to explain the
stability of surface nanobubbles [15].

A different approach is therefore required, and in this
Letter we provide an alternative explanation for the long
lifetimes of surface nanobubbles. The theory relies only on
classical, well-known, and proven continuum concepts
such as diffusion and Henry’s law. Furthermore, the theory
only uses confirmed nanobubble properties, namely the
pinned contact line [16,17] of nanobubbles and the fact

that nanobubbles exist in relatively high coverage fractions
at the liquid-solid interface [18,19]. No fitting or uncon-
trolled assumptions are required to obtain lifetimes that are
consistent with experimental findings. The pinned contact
line of surface nanobubbles has, until now, received little
attention but it turns out to be crucial for long nanobubble
lifetimes. The origin of the pinned contact lines is beyond
the scope of this work and here we will only address the
lifetime question of surface nanobubbles, which has been
puzzling the community ever since the first discovery of
surface nanobubbles [1].
The Letter is organized as follows. First, the theory is

explained and the relevant equations are derived. Next, we
solve the equations numerically and analytically. We vary
several parameters to demonstrate the robustness of the
long lifetimes of surface nanobubbles in varying experi-
mental conditions. In addition, we apply the theory to the
case of electrolytically generated nanobubbles and find that
here also it is consistent with experimental results. We
conclude with predictions from the theory that can straight-
forwardly be tested in experiments.
Theory.—We consider an infinitely large plate in contact

with a liquid layer with thickness ‘ (Fig. 1). The liquid
layer is in contact with the atmosphere at z ¼ ‘ and the
solid-liquid interface is located at z ¼ 0. The solid-liquid
interface is covered with nanobubbles with a number den-
sity (per area) of �; hence the (average) spacing between
neighboring nanobubbles is hdbubi � 1=

ffiffiffiffi
�

p
. In experimen-

tal studies nanobubbles are always recovered in high cover-
age densities [18–21]. Assuming quasisteady diffusion,
any variation of the dissolved gas concentration � in the
horizontal (x, y) direction due to nonuniform gas outflux
decays as expð��z=dbubÞ. Hence we can assume that for
‘ > 5hdbubi the diffusion of gas through the liquid layer is
governed by the one-dimensional diffusion equation:

@�

@t
¼ D

@2�

@z2
; z 2 ½0; ‘�; (1)

with D the diffusion constant of the gas in the ambient
liquid and � the (number) concentration of gas in the
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liquid. The characteristic time scale for diffusion through
the water layer is ‘2=D� 105 s, which is similar to the
lifetimes obtained in experiments. The vast difference (�s
vs days) compared to previous estimates originates in using
‘ as the relevant length scale instead of the bubble radius R;
i.e., we use the far-field length scale. Using R as the length
scale is justified for a (free) bubble in an infinite medium.
However, in the case of nanobubbles it is important to
realize that gas has not left the system until it is released
into the atmosphere, and hence ‘ is the relevant length
scale as this is the distance the gas has to travel through the
liquid from the bubble toward the atmosphere. This is also
apparent in a thought experiment where we do not allow
gas to leave the liquid into the atmosphere, for example,
by putting the liquid drop in a closed container. Because
the liquid is supersaturated with some gas that has left the
bubble, and which cannot escape, an equilibrium is
reached (described by Henry’s law discussed later in this
work) and the bubbles do not dissolve [22]. When opening
the container this excess dissolved gas can be released into
the ambient air, allowing the bubble to lose gas into the
liquid. This ‘‘traffic jam effect’’ also plays a crucial role in
the long nanobubble lifetimes.

We will now fully describe the boundary conditions for
the above differential equation (1). They are given by
Henry’s law, which relates the gas concentration in the
liquid to the gas pressure outside the liquid near the
interfaces:

�ðz ¼ 0; tÞ ¼ pbub½RðNðtÞÞ�
kH

and �ðz ¼ ‘; tÞ ¼ patm

kH
:

(2)

Here, kH is Henry’s constant, pbub the pressure inside the
nanobubbles and patm the atmospheric pressure. RðtÞ is the
radius of curvature of the nanobubbles, which depends on
time because the bubbles get flatter as they drain. In the
case of a pinned contact line, the radius of curvature is

related to the (internal) contact angle �ðtÞ by RðtÞ ¼ Rb

sin�ðtÞ ,
where Rb is the base radius (cf. Fig. 1), which is constant

due to the pinned contact line. The (relative) pressure
inside the bubbles pbubðtÞ is the Laplace pressure

pbubðtÞ ¼ patm þ 2�

R
¼ patm þ 2�

Rb

sin�ðtÞ; (3)

where � is the liquid-vapor surface tension. For � < 90�,
which is the case for surface nanobubbles, the internal
pressure thus decreases as � decreases. This effect provides
a negative feedback in the dissolution process, prolonging
the lifetime of the nanobubbles. In this work we do not
consider the effects of electrostatic effects on the internal
pressure of surface nanobubbles, as electrostatic effects act
to reduce the internal pressure and are therefore not a
driving force but rather a stabilizing force. It is therefore
possible that the derived lifetimes in this work (hours,
days) are an underestimation of real lifetimes.
The (single) nanobubble gas content NðtÞ decreases due

to the diffusive flux of gas at z ¼ 0, which is the location at
which gas is transferred from the nanobubbles (z ¼ 0�) to
the liquid (z ¼ 0þ). The diffusive flux is given by Fick’s
law J ¼ �Dð@�=@zÞ, thus

dN

dt
¼ � J

�
¼ D

�

@�ðz; tÞ
@z

��������z¼0
: (4)

The factor � arises to convert the molecular flux per unit
area of the substrate to the molecular flux per single surface
nanobubble. Equation (4) immediately shows how a low
nanobubble coverage (� � 0) corresponds to small global
flux, J ¼ ��dN=dt.
To evaluate the boundary condition at z ¼ 0 [Eq. (2)],

we need to relate the number of atoms inside a nanobubble
[Eq. (4)] to the geometrical shape of the bubble. To calcu-
late the geometrical properties of a nanobubble containing
N atoms of gas, we use the ideal gas law pð�ÞVð�Þ ¼
NkBT using the expression for the volume of a spherical
cap Vð�Þ ¼ �

3 ðRb= sin�Þ3ð2–3 cos�þ cos3�Þ. Here, kB is

Boltzmann’s constant, T the temperature (assumed to be
constant at 300 K), and � the gas-side (internal) contact
angle of the nanobubbles. This implicit equation can be
solved numerically for �ðNÞ. We can then calculate the

FIG. 1 (color online). Sketch of a liquid layer of thickness ‘ in contact with a solid (left). The top of the liquid is exposed to
atmospheric conditions. At the solid-liquid interface nanobubbles are present with typical internal contact angle �, height h, and radius
of curvature R. They are not drawn to scale. The arrows indicate the gas flow direction. On the right a further enlargement of one
nanobubble is shown.
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radius of curvature of the nanobubbles R, which gives us
the internal bubble pressure [Eq. (3)]. Using this pressure,
the boundary condition at z ¼ 0 [Eq. (2)] can be evaluated,
which closes our model. In the next section, we will solve
these model equations numerically.

Numerical evaluation.—Due to the nontrivial boundary
condition at z ¼ 0 [Eq. (2)] we first solve the diffusion
equation (1) numerically. The simulations were done for
different initial conditions. Because the real initial condi-
tions are unknown, we choose the two extremes between
which we expect the real initial conditions. The first type of
initial condition consists of a linear concentration profile,
which allows the system to begin transporting gas from the
bubbles immediately (t ¼ 0),

�ðz; t ¼ 0Þ ¼ pbubðR0Þ � patm

kH

�
1� z

‘

�
þ patm

kH
: (5)

Here, R0 indicates the initial radius of curvature of the
nanobubbles. We choose R0 such that it is equivalent to an
initial contact angle �0 ¼ 40� for given base radius Rb.

The second type of initial condition assumes that the
nanobubble formation procedure (ethanol-water exchange
or replacing cold water with warm water [21]) supersatu-
rates and mixes the water such that the concentration
is uniform and equal to the concentration near the
nanobubbles:

�ðx; t ¼ 0Þ ¼ pbubðR0Þ
kH

: (6)

The real initial concentration profile will most likely be
something between (5) and (6): the ethanol-water
exchange uniformly supersaturates the water but it takes
the nanobubbles some time to form so some gas already
drains into the atmosphere. As we will see, both initial
concentration profiles produce long-living nanobubbles.

Results.—How long does a nanobubble survive
according to this description? Using typical parameters
that apply to experiments on surface nanobubbles [8]

(~� ¼ 4� 1012 m�2, ‘ ¼ 10�2 m, � ¼ 0:072 N=m, D ¼
10�9 m2=s, kH ¼ 2:6� 10�19 Pa �m, and T ¼ 300 K)
and the initial condition [Eq. (5)] we obtain the results
shown in Fig. 2. Figure 2(a) shows hourly snapshots of the
concentration profile�ðzÞ. From these curves it is apparent
that the transport of gas away from the bubble is limited by
the diffusion rate of the gas through water far away from
the bubble. This leads to an almost flat (zero-slope) con-
centration profile near the bubble through which the dif-
fusive gas flux is very small. Figure 2(b) [red (gray) curve]
shows the radius of curvature of the spherical cap R as a
function of time. This radius of curvature increases (due to
the pinned contact line), which lowers the internal gas
pressure [Eq. (3)], enhancing the lifetime of the nanobub-
bles. Finally, Fig. 2(b) (black curve) shows the amount of
particles contained inside an individual nanobubble
through time. Here we see that a typical nanobubble that
starts out with over 100 000 atoms and ends up with just
over 500 atoms after 36 h.
As a criterion for bubble dissolution we choose a critical

bubble height of h� ¼ 1 nm, after which it may no longer
be appropriate to use continuum physics, and also effects
such as the disjoining pressure start to dominate the pres-
sure inside the bubble rather than solely the Laplace pres-
sure. From molecular dynamics it is known that continuum
models (e.g., Navier-Stokes, diffusion equation, Henry’s
law) are valid down to the nanometer scale [15,22]. Using
the same criterion we find that above bubble is stable for
36 h, which is 10 orders of magnitude longer than previ-
ously thought and in agreement with experimental findings
and the expected time scale ‘2=D.
Analytic solution.—The concentration profiles in Fig. 2

suggest that the boundary condition at z ¼ 0 is of
Neumann type, @�=@zjz¼0 ¼ 0. Taking the time derivative
of the boundary condition at z ¼ 0 [Eq. (2)] and substitut-
ing Eq. (4) into the result we obtain

@�

@z

��������z¼0
¼ �

D d�
dN

@�

@t

��������z¼0
: (7)
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FIG. 2 (color online). Results of the calculations using the initial conditions from Eq. (5) and parameters described in the text.
(a) Snapshots of the concentration profile at 1 h intervals. Because the bubbles are pinned, the radius of the curvature increases as the
bubble drains, lowering the concentration at the bubble side (z ¼ 0). (b) Evolution of the nanobubble gas content (black curve) and the
radius of curvature of the liquid-gas interface R [red (gray) curve] as a function of time.
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Filling in representative values for the quantities we find
that the concentration gradient at z ¼ 0 is over 5 orders of
magnitude smaller than the typical global concentration

gradient (��̂=‘), with �̂ ¼ ���atm. This means that
the boundary condition for the gradient at z ¼ 0 can indeed
be considered to be approximately zero. For zero gradient

the analytic solution is �̂ðz; tÞ ¼ �̂bub;0 expð��2Dt=

ð4‘2ÞÞ cosð�z=ð2‘ÞÞþ �̂transientðtÞ. The exact form of

�̂transient depends on the initial conditions but declines

quickly. A remarkable feature of this result is that �̂ðz; tÞ
only depends on D and ‘ and is completely independent
of � and �. Of course, �must be high enough to be able to
consider the system as one dimensional. Similarly, the
fraction �=ðDd�=dNÞ must be low enough such that
the local gradient at z ¼ 0 [Eq. (7)] is small compared to
the global gradient.

Varying initial conditions.—How does the initial con-
centration profile affect the lifetime of the nanobubbles?
During the ethanol-water exchange procedure that is most
commonly used to generate nanobubbles experimentally,
ethanol is flushed away with clean water. It is therefore
likely that the initial gas concentration profile is uniform in
z, due to mixing. We redid the same calculations as before,
using an uniform initial concentration profile, and the
results are plotted in Fig. 3. We observe very similar
concentration profiles as before, except for small times
where the influence of the initial conditions is still felt.
As can be observed in Fig. 3(b), it takes 2–3 h before the
bubbles ‘‘feel’’ the influence of the ambient air and start to
dissolve. This means that during these first hours, the
bubbles barely shrink as the (global) concentration gra-
dient near the bubbles is close to zero.

Robustness of the results.—How robust are the nano-
bubble lifetimes against variations in the experimental
system? By changing � and ‘ in the numerical calculation,
we verify the result from the analytical solution to the
diffusion equation for which it holds that the diffusion
profile evolution only depends on D and ‘.

First, we look at the surface tension �. Most often an
ethanol-water exchange procedure is applied to form nano-
bubbles. This method introduces contamination into the
system, which lowers the surface tension. It is therefore
important to understand the influence of � on the nano-
bubble lifetime. We find that surface tension does not play
any role in the dissolution time of nanobubbles. This result
remains counterintuitive as surface tension is the driving
force for nanobubble dissolution. Indeed, a higher surface
tension increases the Laplace pressure [Eq. (3)], thus
increasing the driving that leads to dissolution. However,
it also increases the gas content inside the bubbles. This
denser reservoir requires a larger flux to drain in the same
time. Both effects scale linearly with �; hence, they cancel.
In previous studies, the liquid height ‘ has never been

considered as a parameter that affects nanobubble life-
times. Based on the analytical solution presented before
we expect that �� ‘2=D, which is indeed exactly recov-
ered from the numerical calculations. This indicates that
the liquid cell size (and geometry) is very important to the
lifetime of nanobubbles: the amount of liquid the gas has to
travel through determines the time scale of the nanobubble
lifetime. ‘ is easy to vary, we suggest performing corre-
sponding experiments to test our prediction.
Electrolysis.—How do nanobubbles behave according to

this description when gas is generated at the solid-liquid
interface (e.g., by electrolysis [16,23])? A rough estimate
based on the values cited in Ref. [16] gives a constant
influx of order �105 molecules per bubble per second.
For an equilibrium to exist (the bubbles neither grow
or shrink) the diffusive flux away from the bubble must
then be equal to this influx due to electrolysis, hence
D
� �̂ðz ¼ 0Þ=‘ ¼ 105 s�1. This corresponds to a nanobub-

ble contact angle of � ¼ 49� and nanobubble content N ¼
2� 105. Interestingly, this means that the bubble contents
are refreshed every two seconds. This only highlights the
fact that nanobubbles are not static: without driving (such
as electrolysis) they dissolve, whereas with driving the gas
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FIG. 3 (color online). Numerical results for the initial conditions [Eq. (6)]. (a) Hourly snapshots of the concentration profile. Due to
the initial conditions, some gas that is initially dissolved in the liquid first has to drain to the atmosphere until a concentration gradient
exists near the bubble. As compared to the linear profile case (Fig. 2) the bubbles gain an additional few hours of lifetime because of
this. (b) Evolution of the nanobubble gas content and the radius of curvature of the surface nanobubbles.
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atoms inside the bubble are replaced every couple of
seconds.

Conclusion.—We have modeled the gas flow from nano-
bubbles through the liquid to the atmosphere to study the
lifetime of surface nanobubbles. We find that nanobubbles
are not stable, but dissolve by diffusion. However, due to
their pinned contact lines and because the gas has to diffuse
toward the atmosphere, they dissolve on a much longer
time scale than free bubbles in an infinite liquid. This last
point (diffusion through a relatively thick layer of liquid)
explains why previous molecular dynamics results could
not recover long nanobubble lifetimes: the system size in
molecular dynamics is limited to several tens of nano-
meters, resulting in lifetimes of order 100 ns, consistent
with our findings in Ref. [15]. Using the correct length
scales (‘� 1–10 mm), we find that surface nanobubbles
can easily survive in excess of a day, an increase of 10
orders of magnitudes as compared to previous estimates of
�s. The results from the experiment where electrolysis is
used corroborate the results in this Letter: a nonzero cur-
rent is measured, meaning that gas is continuously formed
at the substrate. We find that the gas flux induced by this
current leads to nanobubbles with � ¼ 46�, consistent with
the experimental results of Ref. [16].
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